Semantic Single Video Segmentation with Robust Graph Representation
نویسندگان
چکیده
Graph-based video segmentation has demonstrated its influential impact from recent works. However, most of the existing approaches fail to make a semantic segmentation of the foreground objects, i.e. all the segmented objects are treated as one class. In this paper, we propose an approach to semantically segment the multi-class foreground objects from a single video sequence. To achieve this, we firstly generate a set of proposals for each frame and score them based on motion and appearance features. With these scores, the similarities between each proposal are measured. To tackle the vulnerability of the graph-based model, low-rank representation with l2,1-norm regularizer outlier detection is proposed to discover the intrinsic structure among proposals. With the “clean” graph representation, objects of different classes are more likely to be grouped into separated clusters. Two open public datasets MOViCS and ObMiC are used for evaluation under both intersection-over-union and F-measure metrics. The superior results compared with the state-of-the-arts demonstrate the effectiveness of the proposed method.
منابع مشابه
A Graph-Based Approach to Optical Flow Estimation
A vector field which describes the apparent motion between two images of a video sequence is commonly known as optical flow. The accurate estimation of these displacement vectors is crucial for several computer vision problems, including video object segmentation and tracking. In this work we propose a new algorithm for computing a dense optical flow field that tackles the inherent problems of ...
متن کاملSemi-supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation
Abstract. Deep convolutional neural networks (CNNs) have been immensely successful in many high-level computer vision tasks given large labelled datasets. However, for video semantic object segmentation, a domain where labels are scarce, e↵ectively exploiting the representation power of CNN with limited training data remains a challenge. Simply borrowing the existing pre-trained CNN image recog...
متن کاملVideo Scene Segmentation with a Semantic Similarity
Video Scene Segmentation is an important problem in computer vision as it helps in efficient storage, indexing and retrieval of videos. Significant amount of work has been done in this area in the form of shot segmentation techniques and they often give reasonably good results. However, shots are not of much importance for the semantic analysis of the videos. For semantic and meaningful analysi...
متن کاملVideo Collection Summarization by Semantic Graph Comparison
As the amount of available digital video content is increasing exponentially, novel ways of storing, accessing and retrieving it are being developped, such as indexing, segmentation or abstraction techniques. Video abstraction can be useful in many ways – from automatic home movie editing to easier (and faster) exploration of a video collection. Video summaries can be a set of carefully selecte...
متن کاملA Study of Actor and Action Semantic retention in Video Supervoxel Segmentation
Existing methods in the semantic computer vision community seem unable to deal with the explosion and richness of modern, open-source and social video content. Although sophisticated methods such as object detection or bag-of-words models have been well studied, they typically operate on low level features and ultimately suffer from either scalability issues or a lack of semantic meaning. On th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015